Theoretical cosmology

Introduction

Francisco Torrentí

f.torrenti@unibas.ch

Master in Physics - Frühjahrsemester 2021

• Theory: Each Wednesday from 14:00 - 16:00 h (~14 lectures)

Lecturer: Francisco Torrenti <u>f.torrenti@unibas.ch</u> - Skype: tsocap - Office: 4.15, PH

• Exercises: Approx. every two weeks, starting the week 15.03-19.03 [Date to be decided] (~6 sheets)

Lecturer: Kenneth Marschall <u>kenneth.marschall@unibas.ch</u> - Skype: ken.marschall - Office: 4.15, PH

LINK TO ZOOM:

https://unibas.zoom.us/j/94958214553? pwd=RXdpUWcxWTJKd3NLSXBzQ0JHbnJLdz09

• Exam: Wednesday 9th of June, 14:00 - 16:00 h

Bibliography

PREREQUISITES: General relativity, Quantum Field Theory

BOOKS:

• Baumann lectures on cosmology

http://cosmology.amsterdam/education/cosmology/

- Physical Foundations on cosmology, V. Mukhanov.
- Modern cosmology, S. Dodelson.
- Cosmology, S. Weinberg.
- Primordial cosmology, P. Peter, J-P. Uzan.
- Spacetime and geometry, S. M. Carroll.

Contents of the course

1. Geometry and Dynamics of the Universe

FLRW metric, distances, Friedmann equations...

2. Thermal History of the Universe

Equilibrium distributions, energy and entropy, Boltzmann equations, CDM, recombination, BBN...

3. Cosmological Perturbation Theory and structure formation

Perturbed equations, initial conditions, curvature perturbation, DM clustering, CMB...

4. Inflation

Homogenity and flatness problems, slow-roll inflation, quantum fluctuations, reheating...

COSMOLOGY: an overview on the contents of the course

What is cosmology?

• COSMOLOGY:

- The scientific study of the origin, evolution, and large scale structure of the universe.
- Treats the universe as a whole

• COSMOLOGY is NOT:

Astronomy: Studies individual objects (eg. stars, planets, galaxies), normally with observations Astrophysics: Uses laws of physics to explain the nature of those objects

Astrology: Pseudoscience

Theoretical Cosmology - FS 2021 - U. Basel

the Universe from a fraction of a second until today

Big Bang model

of a second until today

Big Bang model

COSMOLOGICAL PRINCIPLE:

The Universe is homogeneous and isotropic at large scales.

HOMOGENEITY

is a **global property**: there are no preferred points in space

ISOTROPY

is a **local property**: Universe looks the same at all directions

The FLRW metric

The only 4D metric compatible with the cosmological principle is the **FRIEDMANN-LEMAITRE-ROBERTSON-WALKER** (FLRW) METRIC

The FLRW metric

- The main results of the FLRW models where derived by Friedmann (1925) and, independently, by Lemâitre (1927).
- Robertson and Walker proved rigorously that the FLRW metric is the only homogeneous and spatially isotropic metric (1935).

A. Friedmann

. Lemâitre

H. Robertson

A. Walker

FLRWFRWRW

• FL

https://en.wikipedia.org/wiki/Friedmann-Lemaître-Robertson-Walker_metric

The Friedmann equations

ACDM model: parametrization of the Big Bang

Theoretical Cosmology - FS 2021 - U. Basel

The ACDM MODEL

Theoretical Cosmology - FS 2021 - U. Basel

Big Bang nucleosynthesis (BBN)

 At T ≈ 10⁹ K (t ≈ 3 min), the temperature is small enough that new atomic nucleons start forming from protons and neutrons.

• Chain of nuclear reactions:

$$\begin{array}{ll} n^{0} \longrightarrow p^{+} + e^{-} + \overline{\nu}_{e} & p^{+} + n^{0} \longrightarrow_{1}^{2} D + \gamma \\ {}^{2}_{1}D + p^{+} \longrightarrow_{2}^{3} He + \gamma & {}^{2}_{1}D + {}^{2}_{1}D \longrightarrow_{2}^{3} He + n^{0} \\ {}^{2}_{1}D + {}^{2}_{1}D \longrightarrow_{1}^{3} T + p^{+} & {}^{3}_{1}T + {}^{2}_{1}D \longrightarrow_{2}^{4} He + n^{0} \\ {}^{3}_{1}T + {}^{4}_{2} He \longrightarrow_{3}^{7} Li + \gamma & {}^{3}_{2}He + n^{0} \longrightarrow_{1}^{3} T + p^{+} \\ {}^{3}_{2}He + {}^{2}_{1}D \longrightarrow_{2}^{4} He + p^{+} & {}^{3}_{2}He + {}^{4}_{2} He \longrightarrow_{1}^{7} He + \gamma \\ {}^{3}_{2}He + {}^{2}_{1}D \longrightarrow_{2}^{4} He + p^{+} & {}^{3}_{2}He + {}^{4}_{2} He \longrightarrow_{1}^{7} He + \gamma \\ {}^{3}_{1}Li + p^{+} \longrightarrow_{2}^{4} He + {}^{4}_{2} He & {}^{7}_{4}Be + n^{0} \longrightarrow_{3}^{7} Hi + p^{+} \\ \end{array}$$

- After 20min, the Universe is cool enough that the chain of reactions stops: there is no creation of elements heavier than Be.
- Predicted ratio:

$$\frac{n_{\rm He}}{n_{\rm H}} \approx \frac{1}{4}$$

Big Bang nucleosynthesis (BBN)

Abundance of nuclear elements in the solar system

charged electrons and protons first become bound to form electrically neutral hydrogen atoms

$$e^- + p^+ \longrightarrow H + \gamma$$
 T≈1eV

- The photons were able to propagate large distances: the Universe becomes transparent.
- These photos are now detected in the microwave spectrum: the COSMIC MICROWAVE BACKGROUND (detected in 1965).

PLANCK 2018:

"Base ΛCDM model", parameter constraints (Planck 2018):

	Description	Symbol	Value
Indepen- dent para- meters	Physical baryon density parameter ^[a]	$\Omega_{\rm b} h^2$	0.022 30 ±0.000 14
	Physical dark matter density parameter ^[a]	$\Omega_{\rm c} h^2$	0.1188 ±0.0010
	Age of the universe	t ₀	$13.799 \pm 0.021 \times 10^9$ years
	Scalar spectral index	n _s	0.9667 ±0.0040
	Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	Δ_R^2	$2.441 \stackrel{+0.088}{_{-0.092}} \times 10^{-9[20]}$
	Reionization optical depth	τ	0.066 ±0.012

- First galaxies formed about a billion years after the Big Bang.
- After that, larger structures have been forming: galaxy clusters and superclusters.
- Populations of stars age and evolve: distant galaxies (observed as they were shortly after the Big Bang) appear very different from nearby galaxies (observed in a more recent state).
- Observations of star formation, galaxy and quasar distributions and larger structures, agree well with Big Bang simulations of the formation of structure in the universe.

Large scale structure

Source: http://cosmicweb.uchicago.edu/filaments.html

the Universe from a fractic of a second until today

Big Bang model

Problems of Big Bang theory

Problems of Big Bang theory

Inflation

Inflation

Inflation can be realized by a scalar field φ (the inflaton) with potential energy V(φ), as long as V(φ) obeys certain conditions.

Inflation

- Inflation generates a (quasi) scale-invariant spectrum of primordial metric perturbations: scalar and tensor fluctuations (GWs).
- These perturbations get imprinted in the CMB.

Contents of the course

1. Geometry and Dynamics of the Universe

FLRW metric, distances, Friedmann equations...

2. Thermal History of the Universe

Equilibrium distributions, energy and entropy, Boltzmann equations, CDM, recombination, BBN...

3. Cosmological Perturbation Theory and structure formation

Perturbed equations, initial conditions, curvature perturbation, DM clustering, CMB...

4. Inflation

Homogenity and flatness problems, slow-roll inflation, quantum fluctuations, reheating...

Let's start!