

Cosmo*L***attice school:** <u>Lesson 5</u>: Lattice simulations of U(1) gauge theories

Daniel G. Figueroa IFIC UV/CSIC, Spain Adrien Florio Stony Brook U., USA

Francisco Torrenti

U. Basel, Switzerland

Cosmo*L***attice school, IFIC Valencia - 5th-8th September 2022**

Cosmo Lattice - School 2022

Day 1 (Monday 5th)	Lesson 1: What is a Lattice? Lesson 2: Inflation and post-inflationary dynamics Lesson 2b: Primer on Lattice simulations Practice
Day 2 (Tuesday 6th)	Lesson 3: Evolution algorithms ODE Lesson 4: Interacting scalar fields in an expanding background Topical 1: Gravitational non-minimally coupled scalar fields Practice
Day 3 (Wednesday 7th)	Topical 2: Gravitational waves Practice Lesson 5: Lattice U(1) gauge theories Lesson 6: Lattice SU(2) gauge theories
Day 4 (Thursday 8th)	Topical 3: Non-linear dynamics of axion inflation Lesson 7: Parallelization techniques in CosmoLattice Topical 4: Plotting 3D data with CosmoLattice Overview + Practice

Introduction to non-linear gauge field dynamics

WHY DO WE WANT TO SIMULATE GAUGE FIELDS IN THE LATTICE?

- **Realistic** physics models must include gauge fields (e.g. the Standard Model).
- Gauge fields can be significantly excited in the early universe (both during and after inflation).
 - *Example 1:* Broad parametric resonance of gauge fields coupled to oscillating complex scalars [TODAY!]
 - *Example 2:* Gauge field production during axion inflation [TOMORROW!]
- When n_k>>1, gauge fields behave as classical, and we can capture their non-linear dynamics with lattice simulations.

CAVEAT: Gauge theories must be discretized with links and plaquettes in order to preserve gauge invariance in the lattice (like in lattice QCD).

Models with gauge fields

Model 1: Gauge fields coupled to charged scalars (SM-like)

$$S = -\int d^4x \sqrt{-g} \left\{ (D_{\mu}\varphi)^* (D^{\mu}\varphi) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + V(|\varphi|) \right\} \qquad \begin{array}{l} D_{\mu} \equiv \partial_{\mu} - ig_A Q_A A_{\mu} \\ F_{\mu\nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \end{array}$$

+ self-consistent expansion

e.g.: Figueroa, García-Bellido & F.T.: PRD 92 (2015) 8, 083511 Enqvist, Nurmi, Rusak, Weir.: JCAP 02 (2016) 057

TODAY: Lessons 5 [U(1), by me] and 6 [SU(2), by Adrien]

Model 2: Gauge fields coupled to axions (during inflation) $S = -\int d^4x \sqrt{-g} \left\{ \frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\alpha}{4f} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} + V(\phi) \right\} \qquad \begin{array}{l} F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu \\ \tilde{F}_{\mu\nu} \equiv \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta} \end{array}$ + self-consistent expansion e.g.: Caravano, Komatsu, Lozanov, Weller: arXiv: 2204.12874 Figueroa, Lizarraga, Urio, Urrestilla: in preparation

TOMORROW: Topical lecture by Joanes and Ander

- Equations of motion in the continuum
- ► Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization
- Example: Abelian-Higgs model

U(1) gauge-invariant action

► We are going to learn how to simulate in the lattice the following action: **POTENTIAL**

$$S = -\int d^4x \sqrt{-g} \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + (D^A_\mu \varphi)^* (D^\mu_A \varphi) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + V(\phi, |\varphi|) \right\}$$

• Scalar singlet: $\phi \in \Re e$ • Complex scalar: $\varphi \equiv \frac{1}{\sqrt{2}}(\varphi_0 + i\varphi_1)$ $\varphi_0, \varphi_1 \in \Re e$

Scalar sector

• Covariant derivative: $D^{\rm A}_{\mu} \equiv \partial_{\mu} - ig_A Q_A A_{\mu}$

 g_A Gauge coupling

 Q_A Abelian charge

• Field strength:
$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$\mathscr{E}_{i} \equiv F_{0i} \qquad \text{Electric field} \\ \mathscr{B}_{i} \equiv \frac{1}{2} \epsilon_{ijk} F^{jk} \qquad \text{Magnetic field} \\ \end{aligned}$$

U(1) gauge sector

► Fields: $\{\phi, \varphi_0, \varphi_1, A_1, A_2, A_3\}$ (we work in the temporal gauge $A_0 = 0$)

Equations of motion (flat spacetime)

$$S = -\int d^4x \sqrt{-g} \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + (D^A_\mu \varphi)^* (D^\mu_A \varphi) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + V(\phi, |\varphi|) \right\}$$

$$\succ \text{ EOM (flat spacetime):} \begin{cases} \text{ Scalar singlet:} \quad \partial^{\mu}\partial_{\mu}\phi = \frac{\partial V}{\partial\phi} \\ \text{ Complex scalar:} \quad D^{\mu}_{A}D^{A}_{\mu}\varphi = \frac{1}{2}\frac{\partial V}{\partial|\varphi|}\frac{\varphi}{|\varphi|} \\ \text{ U(1) gauge field:} \quad \partial_{\nu}F^{\mu\nu} = J^{\mu}_{A} \qquad J^{\mu}_{A} \equiv 2g_{A}Q_{A}\mathscr{F}m[\varphi^{*}(D^{\mu}_{A}\varphi)] \\ & U(1) \text{ current} \end{cases}$$

Action and EOM are invariant under the following gauge transformations:

$$\begin{split} \phi(x) &\longrightarrow \phi(x) \\ \varphi(x) &\longrightarrow e^{-ig_A Q_A \alpha(x)} \varphi(x) \\ A_\mu(x) &\longrightarrow A_\mu(x) - \partial_\mu \alpha(x) \end{split}$$

$$F_{\mu\nu}(x) \longrightarrow F_{\mu\nu}(x)$$

field strength is
gauge invariant

Equations of motion (with expansion)

> FLRW metric:
$$ds^2 = -a^{2\alpha}(\eta)d\eta^2 + a^2(\eta)\delta_{ij}dx^i dx^j$$
 $d\eta \equiv a^{-\alpha}dt$

> Dynamical EOM in an expanding background:

Stress-energy tensor:

$$T_{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta(\sqrt{g}\mathscr{L})}{\delta g^{\mu\nu}} = g_{\mu\nu}\mathscr{L} - 2\frac{\delta\mathscr{L}}{\delta g^{\mu\nu}} = + \left[2\operatorname{Re}\{(D^A_\mu\varphi)^*(D^A_\nu\varphi)\} + (\partial_\mu\phi)(\partial_\nu\phi)\right] + g^{\alpha\beta}F_{\mu\alpha}F_{\nu\beta}$$
$$-g_{\mu\nu}\left(g^{\alpha\beta}\left[(D^A_\alpha\varphi)^*(D^A_\beta\varphi) + \frac{1}{2}(\partial_\alpha\phi)(\partial_\beta\phi)\right] + \frac{1}{4}g^{\alpha\delta}g^{\beta\lambda}F_{\alpha\beta}F_{\delta\lambda} + V\right)$$
$$\bar{\rho} = a^{-2\alpha}\bar{T}_{00} \quad \bar{p} = \frac{1}{3a^2}\sum_j \bar{T}_{jj}$$

• Energy density: $\rho = K_{\phi} + K_{\varphi} + G_{\phi} + G_{\phi} + K_{U(1)} + G_{U(1)} + V$

• Pressure density:
$$p = K_{\phi} + K_{\varphi} - \frac{1}{3}(G_{\phi} + G_{\varphi}) + \frac{1}{3}(K_{U(1)} + G_{U(1)}) - V$$

$$K_{\phi} = \frac{1}{2a^{2\alpha}} {\phi'}^2$$

$$K_{\varphi} = \frac{1}{a^{2\alpha}} (D_0^A \varphi)^* (D_0^A \varphi)$$

$$G_{\phi} = \frac{1}{2a^2} \sum_i (\partial_i \phi)^2$$

$$G_{\phi} = \frac{1}{a^2} \sum_i (D_i^A \varphi)^* (D_i^A \varphi)$$

$$K_{U(1)} = \frac{1}{2a^{2+2\alpha}} \sum_i F_{0i}^2$$

$$G_{U(1)} = \frac{1}{2a^4} \sum_{i,j < i} F_{ij}^2$$
(Kinetic-scalar)
(Gradient-scalar)
(Electric & Magnetic)

► Friedmann equations:

C

$$\left(\frac{a'}{a}\right)^2 = \frac{a^{2\alpha}}{3m_p^2} \langle K_{\phi} + K_{\varphi} + G_{\phi} + G_{\varphi} + K_{U(1)} + G_{U(1)} + V \rangle$$

$$\frac{a''}{a} = \frac{a^{2\alpha}}{3m_p^2} \langle (\alpha - 2)(K_{\phi} + K_{\varphi}) + \alpha(G_{\phi} + G_{\varphi}) + (\alpha + 1)V + (\alpha - 1)(K_{U(1)} + G_{U(1)}) \rangle$$

- Equations of motion in the continuum
- Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization
- Example: Abelian-Higgs model

Discretization of gauge theories

In Lesson 4, we discretize the EOM of the scalar fields by approximating the derivatives in the continuum by finite differences in the discrete.

Example:
$$\partial_{\mu}\varphi(\mathbf{n})$$

 $\Delta_{\mu}^{+}\varphi \equiv \frac{\varphi_{+\mu} - \varphi}{\delta x^{\mu}} = \partial_{\mu}\varphi + \mathcal{O}(\delta x^{2})$
 $\Delta_{\mu}^{-}\varphi \equiv \frac{\varphi - \varphi_{-\mu}}{\delta x^{\mu}} = \partial_{\mu}\varphi + \mathcal{O}(\delta x^{2})$

- ► CAN WE DO THE SAME FOR **GAUGE FIELDS?** No.
- WHY? This formulation does not preserve gauge invariance in the lattice (and propagates spurious degrees of freedom).

Gauge invariance in the discrete

$$S = \int d^4 x \mathscr{L} \qquad \qquad -\mathscr{L} = (D_{\mu}\varphi)^* D^{\mu}\varphi + \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + V(\varphi^*\varphi) \qquad \qquad e \equiv g_A Q_A$$

► Gauge transformation in the continuum:
$$\begin{cases} \varphi(x) \to e^{-ie\alpha(x)}\varphi(x) \\ A_{\mu}(x) \to A_{\mu}(x) - \partial_{\mu}\alpha(x) \end{cases}$$

$$\begin{aligned} (D_{\mu}\varphi) &\equiv \partial_{\mu}\varphi - ieA_{\mu}\varphi &\longrightarrow \partial_{\mu}(e^{-ie\alpha(x)}\varphi(x)) - ie(A_{\mu} - \partial_{\mu}\alpha(x))\varphi e^{-ie\alpha(x)} = \\ &= e^{-ie\alpha(x)} \left(\partial_{\mu}\varphi(x) - ie(\partial_{\mu}\alpha)\varphi(x) - ieA_{\mu} + ie\partial_{\mu}\alpha(x)\varphi(x) \right) = e^{-ie\alpha(x)} D_{\mu}\varphi \end{aligned}$$

► Gauge transformation in the discrete (naive discretization)
$$\begin{cases} \varphi(x) \to e^{-ie\alpha(x)}\varphi(x) \\ A_{\mu}(x) \to A_{\mu}(x) - \Delta_{\mu}^{+}\alpha(x) \end{cases}$$

$$(D_{\mu}\varphi) \equiv \Delta_{\mu}^{+}\varphi - ieA_{\mu}\varphi \longrightarrow \Delta_{\mu}^{+}(e^{-ie\alpha(x)}\varphi(x)) - ie(A_{\mu} - \Delta_{\mu}^{+}\alpha(x))\varphi e^{-ie\alpha(x)} \neq e^{-ie\alpha(x)}D_{\mu}\varphi$$
[The Leibniz rule $(fg)' = fg' + f'g$ does not hold for finite difference operators]

Leiphiz rule (Jg) = Jg + Jg ages not hold for finite difference of

Links and plaquettes

We must discretize the theory with links and plaquettes in order to preserve GAUGE INVARIANCE in the lattice.

► Parallel transporter: Connects two points of spacetime $dx^{\mu} = (d\eta, dx^{i})$

$$V(x, y) = \operatorname{Pexp}\left(-ie\int_{x}^{y} dx^{\mu}A_{\mu}(x)\right)$$

Links: (minimal connectors)

$$V_{0,n} \equiv \exp\left\{-ie\int_{x(n)}^{x(n+\hat{0})} d\eta' A_0\right\} \approx e^{-ie\delta\eta A_0}$$
$$V_{i,n} \equiv \exp\left\{-ie\int_{x(n)}^{x(n+\hat{i})} dx' A_i\right\} \approx e^{-ie\delta x A_i}$$

gauge fields and links live in points $n + \hat{\mu}/2$

► Notation:
$$V_{\mu} \equiv V_{\mu}(n + \frac{1}{2}\hat{\mu})$$
 $V_{-\mu} \equiv V_{\mu,-\mu}^*$

Gauge transformation:

$$V(x, y) \longrightarrow V(x, y)e^{-ie(\alpha(x) - \alpha(y))}$$

 $[A_{\mu}(x) \rightarrow A_{\mu}(x) - \partial_{\mu}\alpha(x)]$

Links and plaquettes

► Gauge covariant derivative:

$$\left.\begin{array}{l} \varphi \longrightarrow e^{ie\alpha(x)}\varphi \\ A_{\mu} \longrightarrow A_{\mu} - \Delta_{\mu}^{+}\alpha \\ V_{\pm\mu} \longrightarrow V_{\pm\mu}e^{ie(\alpha_{\pm\mu} - \alpha)} \end{array}\right\}$$

$$(D^{\pm}_{\mu}\varphi)(\mathbf{l}) = \pm \frac{1}{\delta x^{\mu}} (V_{\pm\mu}\varphi_{\pm\mu} - \varphi) \qquad \hat{\mathbf{l}} = \hat{\mathbf{n}} + \frac{1}{2}\hat{\mu}$$

• Expansion:
$$(D^{\pm}_{\mu}\varphi)(\mathbf{l}) = (D_{\mu}\varphi)(\mathbf{l}) + \mathcal{O}(\delta x^2)$$

• Gauge transform.: $D^{\pm}_{\mu} \varphi \rightarrow e^{ie\alpha} (D^{\pm}_{\mu} \varphi)$

Plaquettes:

$$V_{\mu\nu} \equiv V_{\mu}V_{\mu,+\nu}^* V_{\nu,+\mu}V_{\nu}^* \simeq e^{-ie\delta x_{\mu}\delta x_{\nu}[F_{\mu\nu} + \mathcal{O}(\mathrm{dx})]}$$

• Expansion:

$$\begin{aligned} \mathscr{R}e\{V_{\mu\nu}\} &\longrightarrow 1 - \frac{1}{2}\delta x_{\mu}^{2}\delta x_{\nu}^{2}e^{2}F_{\mu\nu}^{2} + \mathcal{O}(\delta x^{5}) \\ \mathscr{F}m\{V_{\mu\nu}\} &\longrightarrow -\delta x_{\mu}\delta x_{\nu}eF_{\mu\nu} + \mathcal{O}(\delta x^{3}) \quad \mathbf{I} = \mathbf{n} + \frac{1}{2}\hat{\mu} + \frac{1}{2}\hat{\nu} \end{aligned}$$

• Gauge transform.: $V_{\mu\nu} \longrightarrow V_{\mu\nu}$

Compact and non-compact formulations

Two formulations for U(1) gauge fields:

U(1) toolkit:

Non-compact: based on gauge field amplitudes A_{μ}

Compact: based on links V_{μ}

$$\begin{array}{l} \text{Links}: V_{\mu} \equiv e^{-ig_A Q_A \delta x_{\mu} A_{\mu}} = \cos(g_A Q_A \delta x_{\mu} A_{\mu}) - i \sin(g_A Q_A \delta x_{\mu} A_{\mu}); \quad V_{-\mu} \equiv V_{\mu,-\mu}^*; \quad V_{\mu}^* V_{\mu} = 1; \\ \text{Plaquettes}: \quad V_{\mu\nu} \equiv V_{\mu} V_{\mu,+\mu} V_{\mu,+\nu}^* V_{\nu}^* \simeq e^{-ig_A Q_A \delta x_{\mu} \delta x_{\nu} [F_{\mu\nu} + \mathcal{O}(\delta x)]}; \quad V_{\mu\nu}^* = V_{\nu\mu}; \\ \text{Covariant Derivs.}: (D_{\mu}^{\pm} \varphi)(\mathbf{l}) = \pm \frac{1}{\delta x^{\mu}} (V_{\pm \mu} \varphi_{\pm \mu} - \varphi), \quad \mathbf{l} = \mathbf{n} \pm \frac{1}{2} \hat{\mu} \\ \text{Expansions}: \begin{cases} (D_{\mu}^{\pm} \varphi)(\mathbf{l}) \longrightarrow (D_{\mu} \varphi)(\mathbf{l}) + \mathcal{O}(\delta x^2) & \mathbf{l} = \mathbf{n} \pm \frac{1}{2} \hat{\mu} \\ \mathcal{R}e\{V_{\mu\nu}\} \longrightarrow 1 - \frac{1}{2} \delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2 F_{\mu\nu}^2 + \mathcal{O}(\delta x^5), \quad \mathbf{l} = \mathbf{n} + \frac{1}{2} \hat{\mu} + \frac{1}{2} \hat{\nu} \\ \mathcal{I}m\{V_{\mu\nu}\} \longrightarrow -\delta x_{\mu} \delta x_{\nu} g_A Q_A F_{\mu\nu} + \mathcal{O}(\delta x^3), \quad \mathbf{l} = \mathbf{n} + \frac{1}{2} \hat{\mu} + \frac{1}{2} \hat{\nu} \\ \mathcal{I}m\{V_{\mu\nu}\} \longrightarrow -\delta x_{\mu} \delta x_{\nu} g_A Q_A F_{\mu\nu} + \mathcal{O}(\delta x^3), \quad \mathbf{l} = \mathbf{n} + \frac{1}{2} \hat{\mu} + \frac{1}{2} \hat{\nu} \\ \sum_{n} \frac{1}{4} F_{\mu\nu}^2 \cong -\frac{1}{2} \sum_{n} \frac{\mathcal{R}e\{V_{\mu\nu}\}}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} = -\frac{1}{4} \sum_{n} \frac{(V_{\mu\nu} + V_{\mu\nu}^*)}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} + \mathcal{O}(\delta x^2) \\ \sum_{n} \frac{1}{4} F_{\mu\nu}^2 \cong \sum_{n} \frac{1}{4} \frac{\mathcal{I}m^2 (V_{\mu\nu})}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} = -\sum_{n} \frac{1}{4} \frac{(V_{\mu\nu} - V_{\mu\nu}^*)^2}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} + \mathcal{O}(\delta x^2) \\ \sum_{n} \frac{1}{4} F_{\mu\nu}^2 \cong \sum_{n} \frac{1}{4} \frac{\mathcal{I}m^2 (V_{\mu\nu})}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} = -\sum_{n} \frac{1}{4} \frac{(V_{\mu\nu} - V_{\mu\nu}^*)^2}{\delta x_{\mu}^2 \delta x_{\nu}^2 g_A^2 Q_A^2} + \mathcal{O}(\delta x^2) \\ \sum_{n} \frac{1}{4} F_{\mu\nu}^2 \cong \frac{1}{4} \sum_{n} (\Delta_{\mu}^+ A_{\nu} - \Delta_{\nu}^+ A_{\mu})^2 + \mathcal{O}(\delta x^2) \end{bmatrix} \text{ (Non - Compact)} \\ \text{Gauge Trans.}: \begin{cases} \phi & \longrightarrow e^{+ig_A Q_A \alpha} \phi \\ A_{\mu} & \longrightarrow A_{\mu} - \Delta_{\mu}^+ \alpha \\ V_{\pm\mu} & \longrightarrow V_{\pm\mu} e^{ig_A Q_A(\alpha_{\pm\mu} - \alpha)} \end{cases} \end{cases} \implies \begin{cases} D_{\mu}^{\pm} \phi & \longrightarrow e^{ig_A Q_A \alpha} (D_{\mu}^{\pm} \phi) \\ V_{\mu\nu} & \longrightarrow V_{\mu\nu} \text{ (gauge inv.)} \end{cases} \end{cases}$$

NOTE: SU(2) theories can only be formulated with a compact formulation [see Lesson 6]

- Equations of motion in the continuum
- ► Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization
- Example: Abelian-Higgs model

Gauge EOM in program variables

Program variables:

>

Gauge EOM in program variables

► Second Friedmann equation (dynamical): $b \equiv a' = da/d\tilde{\eta}$

$$\mathcal{X} = \mathcal{K}_{a} \left[a, \widetilde{E}_{K}^{\varphi}, \widetilde{E}_{G}^{\varphi}, \widetilde{E}_{V}^{\varphi}, \widetilde{E}_{K}^{A}, \widetilde{E}_{G}^{A} \right]$$

$$\mathcal{K}_{a} \left[a, \widetilde{E}_{K}^{\varphi}, \widetilde{E}_{G}^{\varphi}, \widetilde{E}_{V}^{\varphi}, \widetilde{E}_{K}^{A}, \widetilde{E}_{G}^{A} \right] \equiv \frac{a^{2\alpha+1}}{3} \frac{f_{*}^{2}}{m_{p}^{2}} \left[(\alpha-2)\widetilde{E}_{K}^{\varphi} + \alpha \widetilde{E}_{G}^{\varphi} + (\alpha+1)\widetilde{E}_{V} + (\alpha-1)(\widetilde{E}_{K}^{A} + \widetilde{E}_{G}^{A}) \right]$$

► First Friedmann equation (constraint):

b

$$b^{2} = \frac{1}{3} \left(\frac{f_{*}}{m_{p}} \right)^{2} a^{2(\alpha+1)} \left[\widetilde{E}_{K}^{\varphi} + \widetilde{E}_{G}^{\varphi} + \widetilde{E}_{V} + \widetilde{E}_{K}^{A} + \widetilde{E}_{G}^{A} \right]$$

with: $\widetilde{E}_{K}^{\varphi} = \frac{1}{a^{6}} \left\langle \tilde{\pi}_{\varphi}^{2} \right\rangle$ $\widetilde{E}_{K}^{A} = \frac{1}{2a^{4}} \frac{\omega_{*}^{2}}{f_{*}^{2}} \sum_{i=1}^{3} \left\langle (\tilde{\pi}_{A})_{i}^{2} \right\rangle$ $\widetilde{E}_{G}^{\varphi} = \frac{1}{a^{2}} \left\langle \sum_{i} (\widetilde{D}_{i}^{A} \varphi)^{*} (\widetilde{D}_{i}^{A} \widetilde{\varphi}) \right\rangle$ $\widetilde{E}_{G}^{A} = \frac{1}{2a^{4}} \frac{\omega_{*}^{2}}{f_{*}^{2}} \sum_{i,j < i} \left\langle \widetilde{F}_{ij}^{2} \right\rangle$ $\widetilde{E}_{V} = \left\langle \widetilde{V}(\tilde{\varphi}, \ldots) \right\rangle$ (Complex scalar: Kinetic and gradient) (Electric and magnetic) (Potential)

- Equations of motion in the continuum
- ► Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization
- Example: Abelian-Higgs model

Discretization of gauge field equations

We can discretize the field equations by using the U(1) toolkit (non-compact): \succ

CONTINUOUS

DISCRETE

Kernels:

$$\begin{aligned} \mathscr{K}_{\varphi}[a,\tilde{\varphi},\widetilde{A}_{j}] &= -a^{\alpha+3}\widetilde{V}_{,|\tilde{\varphi}|}\frac{\tilde{\varphi}}{2\,|\tilde{\varphi}|} + a^{1+\alpha}\overline{\widetilde{D}}^{2}\tilde{\varphi} \longrightarrow \mathscr{K}_{\varphi}[a,\tilde{\varphi},\widetilde{A}_{i}] = -a^{\alpha+3}\frac{\widetilde{V}_{,|\tilde{\varphi}|}}{2}\frac{\tilde{\varphi}}{|\tilde{\varphi}|} + a^{1+\alpha}\sum_{i}\widetilde{D}_{i}^{-}\widetilde{D}_{i}^{+}\tilde{\varphi} \\ \mathscr{K}_{A_{i}}[a,\tilde{\varphi},\widetilde{A}_{j}] &= 2a^{1+\alpha}g_{A}Q_{A}\mathscr{I}m[\tilde{\varphi}^{*}(\tilde{D}_{i}\tilde{\varphi})] \\ +a^{\alpha-1}\tilde{\partial}_{j}\widetilde{F}_{ji} \longrightarrow \mathscr{K}_{A_{i}}[a,\tilde{\varphi},\widetilde{A}_{j}] = a^{1+\alpha}\left(\frac{2g_{A}Q_{A}}{\delta\tilde{x}}\frac{f_{*}^{2}}{\omega_{*}^{2}}\mathscr{I}m[\tilde{\varphi}^{*}e^{-i\delta x\tilde{A}^{i}}\tilde{\varphi}]\right) \\ +a^{\alpha-1}\sum_{i}\left(\tilde{\Delta}_{j}^{-}\tilde{\Delta}_{j}^{+}\widetilde{A}_{i} - \tilde{\Delta}_{j}^{-}\tilde{\Delta}_{i}^{+}\widetilde{A}_{j}\right) \end{aligned}$$

Energies:

$$\widetilde{E}_{G}^{\varphi} = \frac{1}{a^{2}} \langle \sum_{i} (\widetilde{D}_{i}^{A} \varphi)^{*} (\widetilde{D}_{i}^{A} \widetilde{\varphi}) \rangle \longrightarrow \widetilde{E}_{G}^{\varphi} = \frac{1}{a^{2}} \sum_{i} \langle (\widetilde{D}_{i}^{+} \widetilde{\varphi})^{*} (\widetilde{D}_{i}^{+} \widetilde{\varphi}) \rangle$$

$$\widetilde{E}_{G}^{A} = \frac{1}{2a^{4}} \frac{\omega_{*}^{2}}{f_{*}^{2}} \sum_{i,j < i} \langle \widetilde{F}_{ij}^{2} \rangle \longrightarrow \widetilde{E}_{G}^{A} = \frac{1}{2a^{4}} \frac{\omega_{*}^{2}}{f_{*}^{2}} \sum_{i,j < i} \langle (\widetilde{\Delta}_{i}^{+} \widetilde{A}_{j} - \widetilde{\Delta}_{j}^{+} \widetilde{A}_{i})^{2} \rangle$$

And now we solve them with an appropriate evolution algorithm!

Evolution algorithms for gauge theories

(Non-compact) Staggered leapfrog algorithm

➤ Initial conditions:

$$\left\{a, \tilde{\varphi}, \tilde{A}_i\right\} \text{ at } \tilde{\eta}_0, \quad \left\{b_{-1/2}, (\tilde{\pi}_{\varphi})_{-1/2}, (\tilde{\pi}_A)_{i, -1/2}\right\} \text{ at } \tilde{\eta}_0 - \frac{\delta\tilde{\eta}}{2}.$$

► Evolution:

$$\begin{split} &(\tilde{\pi}_{\varphi})_{+1/2} &= (\tilde{\pi}_{\varphi})_{-1/2} + \delta \tilde{\eta} \mathcal{K}_{\varphi}[a, \tilde{\varphi}, \tilde{A}_{i}] \,, \\ &(\tilde{\pi}_{A})_{i,+1/2} &= (\tilde{\pi}_{A})_{i,-1/2} + \delta \tilde{\eta} \mathcal{K}_{A_{i}}[a, \tilde{\varphi}, \tilde{A}_{j}] \,, \\ &b_{+1/2} &= b_{-1/2} + \delta \tilde{\eta} \mathcal{K}_{a} \Big[a, \overline{\widetilde{E}}_{K}^{\varphi}, \widetilde{E}_{G}^{\varphi}, \widetilde{E}_{V}^{\varphi}, \overline{\widetilde{E}}_{K}^{A}, \widetilde{E}_{G}^{A} \Big] \,, \\ &a_{+0} &= a + \delta \tilde{\eta} b_{+1/2} \,, \\ &a_{+1/2} &= (a_{+0} + a)/2 \,, \\ &\tilde{\varphi}_{+0} &= \tilde{\varphi} + \delta \tilde{\eta} a_{+1/2}^{-(3-\alpha)} \, (\tilde{\pi}_{\varphi})_{+1/2} \,, \\ &\widetilde{A}_{i,+0} &= \tilde{A}_{i} + \delta \tilde{\eta} a_{+1/2}^{-(1-\alpha)} \, (\tilde{\pi}_{A})_{i,+1/2} \,, \end{split}$$

> Hubble constraint:

$$b^2 = \frac{1}{3} \left(\frac{f_*}{m_p} \right)^2 a^{2(\alpha+1)} \left[\overline{\widetilde{E}_K^{\varphi}} + \widetilde{E}_G^{\varphi} + \widetilde{E}_V + \overline{\widetilde{E}_K^A} + \widetilde{E}_G^A \right]$$

Evolution algorithms for gauge theories

(Non-compact) Velocity-Verlet algorithm

➤ Initial conditions:

 $\left\{a, b, \tilde{\varphi}, \tilde{\pi}_{\varphi}, \tilde{A}_i, (\tilde{\pi}_A)_i\right\}$ at η_0 .

► Evolution:

$$\begin{split} &(\tilde{\pi}_{\varphi})_{+1/2} = \tilde{\pi}_{\varphi} + \frac{\delta \eta}{2} \mathcal{K}_{\varphi}[a, \tilde{\varphi}, \tilde{A}_{j}], \\ &(\tilde{\pi}_{A})_{i,+1/2} = (\tilde{\pi}_{A})_{i} + \frac{\delta \eta}{2} \mathcal{K}_{A_{i}}[a, \tilde{\varphi}, \tilde{A}_{j}], \\ &b_{+1/2} = b + \frac{\delta \eta}{2} \mathcal{K}_{A}[a, \tilde{E}_{K}^{\varphi}, \tilde{E}_{G}^{\varphi}, \tilde{E}_{V}^{\varphi}, \tilde{E}_{K}^{A}, \tilde{E}_{G}^{A}], \\ &a_{+0} = a + \delta \eta b_{+1/2}, \\ &a_{+1/2} = \frac{a_{+0} + a}{2}, \\ &\tilde{\varphi}_{+0} = \tilde{\varphi} + \delta \eta \frac{(\tilde{\pi}_{\varphi})_{+1/2}}{a_{+1/2}^{3-\alpha}}, \\ &\tilde{\chi}_{i,+0} = \tilde{A}_{i} + \delta \eta \frac{(\tilde{\pi}_{A})_{+1/2}}{a_{+1/2}^{1-\alpha}}, \\ &(\tilde{\pi}_{\varphi})_{+0} = (\tilde{\pi}_{\varphi})_{+1/2} + \frac{\delta \eta}{2} \mathcal{K}_{\varphi}[a_{+0}, \tilde{\varphi}_{+0}, \tilde{A}_{j,+0}], \\ &(\tilde{\pi}_{A})_{i,+0} = (\tilde{\pi}_{A})_{i,+1/2} + \frac{\delta \eta}{2} \mathcal{K}_{A}[a_{+0}, \tilde{\varphi}_{+0}, \tilde{A}_{j,+0}], \\ &b_{+0} = b_{+1/2} + \frac{\delta \eta}{2} \mathcal{K}_{a}[a_{+0}, \tilde{E}_{K,+0}^{\varphi}, \tilde{E}_{K,+0}^{\varphi}, \tilde{E}_{K,+0}^{\varphi}, \tilde{E}_{K,+0}^{\varphi}, \tilde{E}_{K,+0}^{\varphi}, \tilde{E}_{K,+0}^{\varphi}], \end{split}$$

Hubble constraint:

$$b^2 = \frac{1}{3} \left(\frac{f_*}{m_p} \right)^2 a^{2(\alpha+1)} \left[\widetilde{E}_K^{\varphi} + \widetilde{E}_G^{\varphi} + \widetilde{E}_V + \widetilde{E}_K^A + \widetilde{E}_G^A \right]$$

- Equations of motion in the continuum
- Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization
- Example: Abelian-Higgs model

Initial conditions for complex scalars

Initial condition for complex scalars:

For complex scalars we try to set the same spectrum of initial fluctuations as for scalar singlets (see Lesson 2):

$$\delta \tilde{\varphi}_{n}(\tilde{\mathbf{n}}) = \frac{1}{\sqrt{2}} \left(\left| \delta \tilde{\varphi}_{n}^{(l)}(\tilde{\mathbf{n}}) \right| e^{i\theta_{n}^{(l)}(\tilde{\mathbf{n}})} + \left| \delta \tilde{\varphi}_{n}^{(r)}(\tilde{\mathbf{n}}) \right| e^{i\theta_{n}^{(r)}(\tilde{\mathbf{n}})} \right)$$

$$\delta \tilde{\varphi}_{n}^{'}(\tilde{\mathbf{n}}) = \frac{1}{a^{1-\alpha}} \left[\frac{i\tilde{\omega}_{k,\varphi_{n}}}{\sqrt{2}} \left(\left| \delta \tilde{\varphi}_{n}^{(l)}(\tilde{\mathbf{n}}) \right| e^{i\theta_{n}^{(l)}(\tilde{\mathbf{n}})} - \left| \delta \tilde{\varphi}_{n}^{(r)}(\tilde{\mathbf{n}}) \right| e^{i\theta_{n}^{(r)}(\tilde{\mathbf{n}})} \right) \right] - \tilde{\mathcal{K}} \delta \tilde{\varphi}_{n}(\tilde{\mathbf{n}})$$

$$\left| \delta \tilde{\phi}^{(l,r)}(\tilde{\mathbf{n}}) \right| : \text{Rayleigh distribution with expected (*)}$$

$$\theta^{(l,r)}(\tilde{\mathbf{n}}) : \text{Random phase in range [0,2n]}$$

$$\tilde{\mathcal{K}} \equiv a^{\alpha} H/\omega_{*}$$

$$\tilde{\mathcal{K}} = a^{\alpha} H/\omega_{*}$$

$$\tilde{\mathcal{K}} = a^{\alpha} H/\omega_{*}$$

Initial conditions for gauge fields

For gauge fields we only set fluctuations to the time-derivative:

$$A_i(\mathbf{x}, t_*) \equiv 0$$
$$\dot{A}_i(\mathbf{x}, t_*) \equiv \delta \dot{A}_{i^*}(\mathbf{x})$$

Initially we have some electric field, but zero magnetic field

> But the fluctuations must preserve the **Gauss constraint**:

► In the discrete:

$$\sum_{i} \Delta_{i}^{-} \Delta_{0}^{+} A_{i}(\mathbf{n}) = J_{0}^{A}(\mathbf{n}) \qquad \longrightarrow \qquad \Delta_{0}^{+} A_{i}(\tilde{\mathbf{n}}) = i \frac{k_{\text{Lat},i}^{-}}{(k_{\text{Lat},i}^{-})^{2}} J_{0}^{A}(\tilde{\mathbf{n}})$$

$$k_{\text{Lat},i}^{-} = \frac{\sin(2\pi \tilde{n}_{i}/N)}{\delta x} - i \frac{1 - \cos(2\pi \tilde{n}_{i}/N)}{\delta x}$$

Initial conditions for gauge fields

► We want zero electric charge in the lattice, so we require:

$$Q = J_0^A(\mathbf{k} = \mathbf{0}) = \int d^3 \mathbf{x} J_0^A(\mathbf{x}) \propto \int d^3 \mathbf{k} \mathscr{R} e[\varphi_0^*(\mathbf{k})\varphi_1'(\mathbf{k}) - \varphi_0'(\mathbf{k})\varphi_1^*(\mathbf{k})] = 0$$

3 constraints:

$$\begin{vmatrix} \delta \varphi_0^{(l)}(\mathbf{k}) &| = |\delta \varphi_0^{(r)}(\mathbf{k})| \\ &| \delta \varphi_1^{(l)}(\mathbf{k}) &| = |\delta \varphi_1^{(r)}(\mathbf{k})| \\ &| \delta \varphi_1^{(l)}(\mathbf{k}) &| = |\delta \varphi_1^{(r)}(\mathbf{k})| \end{vmatrix}$$

- Equations of motion in the continuum
- Gauge invariance in the lattice: links and plaquettes
- Implementation in CosmoLattice
 - Program variables
 - Discretization and evolution algorithms
 - Initialization

> As an example, we are going to simulate an **Abelian gauge model**:

$$S = -\int d^4x \sqrt{-g} \left\{ (D^A_\mu \varphi)^* (D^\mu_A \varphi) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + V(|\varphi|) \right\}$$

+ self-consistent expansion

$$V(|\varphi|) = \lambda |\varphi|^4 = \frac{\lambda}{4}(\varphi_0 + \varphi_1)^4$$
$$\varphi \equiv \frac{1}{\sqrt{2}}(\varphi_0 + i\varphi_1)$$

> We chose **program variables** analogously to scalar model:

Initial conditions: We distribute the complex scalar amplitude equally between its components:

$$\varphi_0 = \varphi_1 = \phi_* / \sqrt{2}$$
 $\dot{\varphi}_0 = \dot{\varphi}_1 = \dot{\phi}_* / \sqrt{2}$
amplitude for the end of inflation in $\lambda \omega^4$ potential

This model is implemented in the file lphi4U1.h of CosmoLattice.

► In the model file (lphi4U1.h):

► In the parameter file (lphi4U1.in):

► In the model file (lphi4U1.h):

```
alpha = 1;
fStar = normCmplx0;
omegaStar = sqrt(lambda) * normCmplx0;
 f_* = |\varphi_*|, \quad \omega_* = \sqrt{\lambda} |\varphi_*|, \quad \alpha = 1
```

```
auto potentialTerms(Tag<0>) // Term 0: Qual {
return pow<4>(norm(fldCS(0_c))); \longrightarrow \tilde{V}(|\tilde{\varphi}|) = |\tilde{\varphi}|^4}
```

```
auto potDerivNormCS(Tag<0>) // Derivative {
    return 4 * pow<3>(norm(fldCS(0_c))); \longrightarrow \tilde{V}_{,|\tilde{\varphi}|}(|\tilde{\varphi}|) = 4 |\tilde{\varphi}|^3 }
```

```
auto potDeriv2NormCS(Tag<0>) // 2nd derivativ {
return 12 * pow<2>(norm(fldCS(0_c))); \longrightarrow \tilde{V}_{,|\tilde{\varphi}||\tilde{\varphi}|}(|\tilde{\varphi}|) = 12 |\tilde{\varphi}|^2}
```

Cosmo \mathcal{L} attice school, IFIC Valencia - 5th-8th September 2022

Generic model with multiple fields

Consider a model with Np potential terms, Ns scalar singlets and Nc complex ≻ scalars:

$$\tilde{V} = \tilde{V}(\tilde{\phi}_0, \dots, \tilde{\phi}_{N_s}, |\tilde{\varphi}_0|, \dots, |\tilde{\varphi}_{N_c}|) = \tilde{V}^{(0)}(\dots) + \dots + \tilde{V}^{(Nt)}(\dots)$$

your model file must have:

- Np potentialTerms functions: $\{\tilde{V}^{(0)}, ..., \tilde{V}^{(N_t)}\}$ ٠
- **Ns potDeriv functions:** ٠
- Ns potDeriv2 functions: •
- Nc potDerivNormCS functions: ٠
- Nc potDerivNorm2CS functions: $\{\tilde{V},_{|\tilde{\varphi}_0||\tilde{\varphi}_0|}, ..., \tilde{V},_{|\tilde{\varphi}_{N_c}||\tilde{\varphi}_{N_c}|}\}$ •

$$\{ ilde{V},_{ ilde{\phi}_0},\ldots, ilde{V},_{ ilde{\phi}_{N_s}}\}$$

$$\{V, \tilde{\phi}_0 \tilde{\phi}_0, \dots, V, \tilde{\phi}_{N_s} \tilde{\phi}_{N_s}\}$$

$$\{ ilde{V},_{| ilde{arphi}_0|},..., ilde{V},_{| ilde{arphi}_{N_c}|}\}$$

Output from CosmoLattice

- average_norm_cmplx_scalar_[nfld].txt: $\tilde{\eta}$, $\langle |\tilde{\varphi}| \rangle$, $\langle |\tilde{\varphi}'| \rangle$, $\langle |\tilde{\varphi}'|^2 \rangle$, $\operatorname{rms}(|\tilde{\varphi}|)$, $\operatorname{rms}(|\tilde{\varphi}'|)$
- average_[Re/Im]_cmplx_scalar_[nfld].txt: $\tilde{\eta}$, $\langle \tilde{\varphi}_n \rangle$, $\langle \tilde{\varphi}_n' \rangle$, $\langle \tilde{\varphi}_n' \rangle$, $\langle \tilde{\varphi}_n' \rangle$, $\operatorname{rms}(\tilde{\varphi}_n)$, $\operatorname{rms}(\tilde{\varphi}_n)$, $\operatorname{rms}(\tilde{\varphi}_n)$)
- average_norm_[U1]_[nfld].txt: $\tilde{\eta}, \langle |\vec{\widetilde{\mathcal{E}}}| \rangle, \langle |\vec{\widetilde{\mathcal{E}}}|^2 \rangle, \langle |\vec{\widetilde{\mathcal{E}}}|^2 \rangle, \operatorname{rms}(|\vec{\widetilde{\mathcal{E}}}|), \operatorname{rms}(|\vec{\widetilde{\mathcal{E}}}|)$
- average_energies.txt:

 $\begin{array}{c} \tilde{\eta}, \, \tilde{E}_{K}^{(\phi,0)}, \, \tilde{E}_{G}^{(\phi,0)}, \, \dots, \, \tilde{E}_{K}^{(\phi,N_{s}-1)}, \, \tilde{E}_{G}^{(\phi,N_{s}-1)}, \, \tilde{E}_{K}^{(\varphi,0)}, \, \tilde{E}_{G}^{(\varphi,0)}, \, \dots, \, \tilde{E}_{K}^{(\varphi,N_{c}-1)}, \, \tilde{E}_{G}^{(\varphi,N_{c}-1)}, \\ \tilde{E}_{K}^{(\Phi,0)}, \, \tilde{E}_{G}^{(\Phi,0)}, \, \dots, \, \tilde{E}_{K}^{(\Phi,N_{d}-1)}, \, \tilde{E}_{G}^{(\Phi,N_{d}-1)}, \, \tilde{E}_{K}^{(A,0)}, \, \tilde{E}_{G}^{(A,0)}, \, \dots, \, \tilde{E}_{K}^{(A,N_{u1}-1)}, \, \tilde{E}_{G}^{(A,N_{u1}-1)}, \\ \tilde{E}_{V}^{(0)}, \, \dots, \, \tilde{E}_{V}^{(N_{p}-1)}, \, \langle \tilde{\rho} \rangle \end{array}$

- average_gauss_[U1/SU2]_[nfld].txt: $\tilde{\eta}$, $\frac{\langle \sqrt{(\text{LHS}-\text{RHS})^2} \rangle}{\langle \sqrt{(\text{LHS}+\text{RHS})^2} \rangle}$, $\langle \sqrt{(\text{LHS}-\text{RHS})^2} \rangle$, $\langle \sqrt{(\text{LHS}+\text{RHS})^2} \rangle$.
- spectra_norm_cmplx_scalar_[nfld].txt: $\tilde{k}, \, \widetilde{\Delta}_{\widetilde{\varphi}}(\tilde{k}), \, \widetilde{\Delta}_{\widetilde{\varphi}'}(\tilde{k}), \, \tilde{n}_{\tilde{k}}, \, \Delta n_{bin}$
- spectra_norm_[U1/SU2]_[nfld].txt: $\tilde{k}, \, \widetilde{\Delta}_{\widetilde{\mathcal{E}}}(\tilde{k}) \,\, \widetilde{\Delta}_{\widetilde{\mathcal{B}}}(\tilde{k}), \, \Delta n_{bin}$

Source term

$$\ddot{A}_{i} - a^{-2(1-\alpha)} \nabla^{2} A_{i} + \partial_{j} \partial_{i} A_{j} + (1-\alpha) \frac{a'}{a} A_{i}' = a^{2\alpha} J_{i}^{A}$$

$$J_{A}^{i} \equiv 2g_{A} Q_{A} \mathscr{F}m[\varphi^{*}(\partial_{i} \varphi - ig_{A} Q_{A} A_{i} \varphi)]$$

$$\downarrow \text{contains}$$
Similar to the source term
of the analogous scalar equation
$$\varphi_{A} Q_{A} |\varphi|^{2} A_{i}$$

Gauge fields coupled to charged scalars with a monomial potential **experience parametric resonance**

(similar to the scalar case seen in Lesson 2)

Explicit comparison between scalar and gauge simulations: D.G. Figueroa, J. García-Bellido and F.T.: **PRD 92 (2015) 8, 083511**

Cosmo \mathcal{L} attice school, IFIC Valencia - 5th-8th September 2022

C A

Example: Abelian-Higgs model

Cosmo \mathcal{L} attice school, IFIC Valencia - 5th-8th September 2022

Thank you!