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Example exercises

Example 3.1: Boltzmann equation

For the proper treatment of thermodynamical processes beyond equilibrium − such as the
decoupling of species − one has to study the evolution of the phase space distribution function
f(xµ, pµ), which is governed by the so-called Boltzmann equation:

L̂[f(xµ, pµ)] = C[f(xµ, pµ)] , (1)

where L̂ represents the Liouville operator and C the collision term. First we discuss the Liouville
operator:

(a) Starting from df/dλ = C, where λ denotes the considered spacetime trajectory, show that
the relativistic form of the Liouville operator is given by:

L̂ = pµ
∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ
. (2)

In general this can be a very elaborate and complicated expression. In the FLRW-model we are
assuming homogeneity and isotropy, which leads to a substantial simplification of L̂. Not only
Γαβγ obtains a fairly simple form, but also the dependency of the distribution function is reduced
to the magnitude of the momentum p = | ~p | and time, i.e. f(p, t) (or equivalently f(E, t)).
Furthermore, from now on we assume the curvature parameter to be k = 0. The resulting
Liouville operator is then:

L̂[f(p, t)] = E
∂f

∂t
− ȧ

a
pE

∂f

∂p
. (3)

Small exercise for you: Use the Mathematica notebook from sheet 1 to compute the Liouville
operator for a FLRW universe.

(b) Recall the definition of the number density n from the lecture. Using the L̂[f(p, t)] from
above, show that the Boltzmann equation can be written as:

d

dt
n+ 3Hn =

g

(2π)3

∫
d3p

C[f ]

E
. (4)

(c) Explain why the left-hand side of the Boltzmann equations for energy densities looks like:

d

dt
ρ+ 3H(ρ+ P ) =

g

(2π)3

∫
d3pC[f ] . (5)

The collision term on the right-hand side of the Boltzmann equation is a little more involving
(Note that if the collision term in Eq. (5) is zero, we just obtain the continuity equation). In
principle an arbitrary number of particles may appear in the collision, but usually we only
encounter processes involving three or four particles. In the following, we consider as a specific
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example the following process ψψ̄ → XX̄. For such a process the collision term has the following
form:

g

(2π)3

∫
d3pψ

C[f ]

Eψ
= −

∫
dΠψdΠψ̄dΠXdΠX̄(2π)4δ4(pψ + pψ̄ − pX − pX̄)× ...

...× (|M|2ψψ̄→XX̄fψfψ̄(1± fX)(1± fX̄)−|M|2XX̄→ψψ̄fXfX̄(1± fψ)(1± fψ̄)) ,

(6)

where

dΠi =
g

(2π)3

d3pi
2Ei

. (7)

This expression can be simplified by several assumptions. First, T (or CP) invariance implies
that

|M|2ψψ̄→XX̄ = |M|2XX̄→ψψ̄ = |M|2 . (8)

Second, we use Maxwell-Boltzmann instead of Fermi-Dirac or Bose-Einstein distributions (which
becomes exact in the limit T/m→ 0) and that the blocking or stimulated emission factors can
be approximated by (1± fi) ≈ 1.

(d) Assume further that the decay products are in thermal equilibrium and that the chemical
potentials can be neglected, show that the collision term can be written as:∫

dΠψdΠψ̄dΠXdΠX̄(2π)4δ4(pψ + pψ̄ − pX − pX̄)|M|2(fψfψ̄ − f
eq
ψ f

eq

ψ̄
) . (9)

(e) By introducing the thermally averaged annihilation cross section times velocity and
assuming that nψ = nψ̄, show that the Boltzmann equation for ψ can be written as:

d

dt
nψ + 3H nψ = −〈σ|v| 〉(n2

ψ − (neq
ψ )2) . (10)

Note: If the particle ψ is underlying more than one process, the right hand-side of the
Boltzmann equation will be a sum of several terms.

Remark : A more detailed derivation of the Boltzmann equation, in particular the collision
term, can be found for example in Kolb/Turners The Early Universe p. 115− 120. Also: note
that we have only discussed the homogeneous and isotropic case. The equation becomes more
complicated if the distribution functions also depend on ~x and ~p. See for example Cosmology
from Steven Weinberg.
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Homework exercises

Exercise 3.1: Electron freeze-out

(a) Derive the Boltzmann equation for the free electron fraction Xe ≡ ne/nb:

d

dx
Xe = − λ

x2

(
X2
e − (Xeq

e )2

)
, (11)

where x ≡ BH/T contains the binding energy BH = mp + me − mH = 13.6eV and the
temperature T . For the thermally averaged recombination cross section 〈σv〉 the following
approximation can be used:

〈σv〉 = σT

(
BH

T

)1/2

, (12)

where σT ' 2× 10−3 MeV−2 is the Thomson cross section. The parameter λ should have
the form:

λ ' 7× 104

(
Ωbh

0.035

)
. (13)

(b) Solve the Boltzmann equation in Mathematica numerically and compare it to the Saha
equation given in the lecture.

(c) Show that the freeze-out abundance is roughly given by X∞e ' xf/λ, where xf denotes
the freeze out time.

Remark : The baryon asymmetry of the universe is given by η = nB/nγ ' 6× 10−10.

Exercise 3.2: Transparency of the universe

The universe becomes transparent when the mean free path λγ becomes larger than the Hubble
length lH = 1/H. The mean free path of photons is mainly determined by scattering with
electrons, thus given by λγ ' 1/(σTne), where σT is the Thomson cross section and ne = Xe n

tot
e

the number of free electrons. We have seen in the last exercise that Xe falls during recombination
(which takes place between z = 1300 and 1000) from Xe = 1 to roughly 10−4.

(a) Show that the universe is transparent after recombination, while it was opaque before.

(b) Determine the decoupling temperature.

Hint: Assume that the universe is solely filled with matter, i.e. Ω0
m = 1, and go back to sheet 1

for inspiration, if needed. Also, remember charge neutrality of the universe and we can assume
that roughly nB ' ntote . Use the Saha equation to estimate ne in the second exercise.

Exercise 3.3: Black Body Forever!

The number density of photons per frequency interval during the time when they are in
equilibrium with matter is given by the black-body spectrum:

n(ν)dν =
8πν2

c3

dν

exp

(
hν
kBT

)
− 1

. (14)

After recombination photons have decoupled and move freely through space. Show that the
photons maintain their black-body spectrum until today. Assume for simplification that the
photon decoupling happened instantaneously.
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