Francisco Torrentí, Ken Marschall

Sheet 1

# Example exercises

## Example 1.1: Friedmann got hit by an apple

Consider a sphere with mass M and radius R(t) that varies with time.

- (a) Derive the continuity equation by assuming that the mass inside the sphere is preserved.
- (b) Derive the second and first Friedmann equations from:

$$\ddot{R}(t) = -\frac{GM}{R^2(t)} , \qquad (1)$$

where G is Newton's constant. Recall the results obtained in the lecture, compare and discuss the differences.

## Example 1.2: $\Omega_M$ - $\Omega_\Lambda$ parameter space

Describe the regions in the plane  $(\Omega_M, \Omega_\Lambda)$  that correspond to a universe that is: 1) open/closed, 2) expanding/collapsing, and 3) accelerating/decelerating.

### Example 1.3: Accelerated Universe

Consider a flat universe filled with dust and a non-zero cosmological constant, such that  $\Omega_{\Lambda}^{0} + \Omega_{M}^{0} = 1$ . This scenario models the present universe fairly well. The observed values of the density parameters are  $\Omega_{\Lambda}^{0} \simeq 0.69$ ,  $\Omega_{m}^{0} \simeq 0.31$ ,  $\Omega_{r}^{0} \simeq 9.4 \times 10^{-5}$  and  $|\Omega_{k}^{0}| \leq 0.01$ .

(a) Show that the scale factor can be expressed as

$$a(t) = \left(\frac{\Omega_m^0}{1 - \Omega_m^0}\right)^{1/3} \sinh\left(\frac{3}{2}H_0\sqrt{1 - \Omega_m^0}t\right)^{2/3},$$
(2)

where we have set the scale factor of today to  $a_0 \equiv 1$ .

(b) Use the observed value of the Hubble parameter  $H_0 = 67.66 \pm 0.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$  to compute the age of the universe.

# Homework exercises

#### Exercise 1.1: Horizons and distances

Answer the following questions:

- (a) Indicate if the *particle horizon* and the *event horizon* in a flat FLRW metric are finite or infinite, when the Universe is filled only by 1) radiation, 2) matter, 3) a cosmological constant.
- (b) When measuring distances in cosmology, what is the advantage of using the *luminosity* distance or the angular distance, instead of the metric distance?

### Exercise 1.2: Cosmic time-redshift relation

(a) Derive the relation

$$t_2 - t_1 = \int_{z_2}^{z_1} \frac{dz}{(1+z)H(z)} , \qquad (3)$$

which relates the cosmic time interval  $t_2 - t_1$  and the corresponding redshifts  $z_1, z_2$ .

(b) Consider a flat universe containing only matter. By using the relation derived in part (a), show that the age  $t_0$  of such a universe is given by:

$$t_0 = \frac{2}{3H_0} \ . \tag{4}$$

(c) Calculate explicitly the age of this universe (by using  $H_0 \simeq 67 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ ), and compare it to the result obtained in Example 1.3.

#### Exercise 1.3: Conservation equation from the Friedmann equations

Consider the Friedmann equations for a spatially-flat FLRW Universe,

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho , \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) .$$
(5)

Show that these equations necessarily imply the following conservation constraint,

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0$$
 . (6)

### Exercise 1.4: FLRW metric and the Einstein equations

Write a short *Mathematica* notebook in which you evaluate explicitly the Ricci Tensor  $R_{\mu\nu}$  and the Ricci scalar R for a FLRW-universe. Using this as a basis, you can derive the Friedmann equations.

# Exercise 1.5: Static Universe

Consider a universe with a non-zero cosmological constant  $\Lambda$  and a matter density  $\rho_m$ . Show that there is a non-flat solution for which *a* is constant, and compute the required value of  $\Lambda$ .

### Exercise 1.6: Friedmann equations in conformal time

(a) Using the Friedmann equations in cosmic time t, derive the Friedmann equations in conformal time  $d\eta \equiv dt/a(t)$ ,

$$(a')^2 + ka^2 = \frac{8\pi G}{3}\rho a^4 , \qquad (7)$$

$$a'' + ka = \frac{4\pi G}{3}(\rho - 3p)a^3 , \qquad (8)$$

where  $' \equiv d/d\eta$  and  $\mathcal{H} \equiv a'/a$ .

- (b) Show that for a universe dominated by a fluid with equation of state  $\omega \equiv p/\rho$ , the scale factor goes as  $a(\eta) \sim \eta^{2/(1+3w)}$ . How does the Hubble parameter  $\mathcal{H}$  evolve? Particularise the solutions for a RD and MD universe.
- (c) How does the scale factor  $a(\eta)$  and the Hubble parameter  $\mathcal{H}(\eta)$  evolve in a universe dominated by dark energy ( $\omega = w_{\Lambda} \equiv -1$ )?